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Relations

Definition
A (binary) relation R on sets A and B is a two-variable predicate R(x , y )
where x ∈ A and y ∈ B.

Remark
In mathematics, we often use infix notation, writing a R b instead of R(a, b),
e.g. a = b, a 6 b, f t g, etc.

Definition
An extension (aka graph) of a relation R on sets A and B is a subset [R] of
A× B consisting of the pairs (a, b) where aRb.

Exercise
Prove that any subset of A× B is obtained as an extension of some relation
on A and B.



Examples of relations

1 The relation on days on the calendar, given by x and y fall on the same
day of the week.

2 The relation on vegetable produce, given by price of x is less than price
of y .

3 The relation on people currently alive on the planet, given by x and y
have the same home address.

4 The relation on people in the world, given by x is a brother of y .

5 The relation on people in the world, given by person x is influenced by
person y .

6 The relation on lines on a 2-dim plane, given by line l and line m are
parallel to each other.

7 The relation on points and lines on a 2-dim plane, given by point p is on
line l .



Equivalence relation

Definition
A binary relation R on a domain A is an equivalence relation if it has the
following three properties:

(reflexivity) aRa, for every a in A.

(transitivity) If aRb and bRc, then aRc, for every a, b, and c in A.

(symmetry) If aRb then bRa, for every a and b in A.

Which of the relations of the previous slide are

• reflexive?

• transitive?

• symmetric?



Partial order

Definition
A binary relation R on a domain A is a partial order if it has the following
three properties:

(reflexivity) aRa, for every a in A.

(transitivity) If aRb and bRc, then aRc, for every a, b, and c in A.

(antisymmetry) If aRb and bRa then a = b, for every a and b in A.

Which of the relations of the previous slide are

• anti-symmetric?

• a partial order?

Observe that the relation of strict inequality between integers is not a partial
order since it is not reflexive.



The following are all examples of partially ordered sets (aka posets):

• 6 on the natural numbers;

• 6 on the integers;

• 6 on the rational numbers;

• 6 on the real numbers.

Because of the great many uses and ubiquity of the above examples of
partial order in mathematics, we simply use the symbol 6 for a general
partial order R.

But keep in mind that 6 is only a symbol and it is only

meant to be suggestive; it can have unexpected

interpretations as well. For example, the > relation

on any of these domains is also a partial order, and

can interpret the 6 symbol just as well.



Total order

Definition
A partial order R on a domain A is a total order (also called a linear order) if
it also has the following property: for every a and b in A, either aRb or bRa.

Example
Show that the set

n = {0, 1, · · · , n − 1} ,

which we studied before, has a partial order given by subset relation. Show
that this order is total.



Associated graph of a relation

Suppose a set A comes equipped with a relation R. We can associate a
directed graph (aka a digraph) with vertex set A and with an ordered pair
(a, b) ∈ A× A being an edge precisely when aRb.

Exercise
Express the conditions of reflexivity, transitivity, symmetry, antisymmetry, and
totality in terms of familiar connectivity conditions on the associated graph.



Exercise
If the following graphs are the associated graphs of certain relations, what
facts about those relations can we infer?



Exercise (Partial order on a power
set)
There is a partial order on a power set P(X )
of a set X given by the subset relation:
Check that all the axioms of partial order are
satisfied.
Show that this partial order is not total.

{x , y , z}

{x , y} {x , z} {y , z}

{x} {y} {z}

∅



In fact we can recover the partial order of P(X ) simply from the intersection
(or equivalently the union) operation.
For subsets A, B of X , define

A 6 B ⇐⇒ A ∩ B = A

Exercise
Show that 6 is a partial order relation, and it agrees with the subset relation.



Definition
A non-empty partially ordered set (S,6) is filtered (or is said to be a filtered
set) if for each a, b ∈ S, there is a element c such that a 6 c and b 6 c.

Remark
Every total order is a filtered.

Example
The powerset P(X ) with the subset relation is filtered.

Exercise
Show that for a poset P the set of filtered subsets of P is again filtered.



Minimum and maximum

Definition
We say an element a of a poset P is a minimum (aka a least element) for P
if it is less than or equal to any other element, that is

∀x ∈ P (a 6 x)

Dually, we say an element a of a poset P is a maximum (aka a greatest
element) for P if it is greater than or equal to any other element, that is

∀x ∈ P (x 6 a)



Example
• In (N,6), 0 is a minimum; there is no maximum.

• Let n ∈ N with n > 0. Then 0 is a least element of (n,6), and n − 1 is a
greatest element.

• (Z,6) has no maximum or minimum.

• The interval ((0, 1],6) has a maximum but not a minimum.



Definition
We say that an element is minimal for a partial order if no element is less
than it. Dually, we say that an element y is maximal for a partial order if no
element is greater than it.



Our logical idea of function

A function f from a set X to a set Y is a specification of a unique element
f (x) ∈ Y for each x ∈ X . We write f : X → Y to denote the assertion that f is
a function with domain X and codomain Y .

To describe a particular function, one must specify

• its domain,

• its codomain, and

• the effect of function upon a typical (“variable”) element of its domain.

For instance the “squaring” function on the set of real numbers is specified in
either of the following ways:

1 f : R→ R where f (x) = x2 for every real number x , or

2 x 7→ x2 : R→ R,

3 λx .x2 : R→ R.



How to define a function? (I)
The simplest way to define a function is to give its value at every x with an
explicit well-defined expression.

Example
• Let f : N→ N be the function defined by f (n) = n + 1, that is f = λn.n + 1.

• Let g : R× R→ R be the function defined by g(x , y ) = x2 + y2.

• Let p : N→ N be the function defined by p(n) = the largest prime
number less than or equal to n.

• The assignment to each real number the greatest integer less than or
equal to it. We call this function the floor function. We denote this
function by b−c : R→ Z.

• The assignment to each real number the least integer greater than or
equal to it. We call this function the ceiling function. We denote this
function by d−e : R→ Z.



Some functions on power sets

Example
• λx .{x} : X → P(X ). We sometimes denote this function by {−}.
• λA.

⋃
a∈A

a : P(P(X ))→ P(X ).



How to define a function? (II)
It is sometimes convenient to define a function using different specifications
for different elements of the domain.

Example
The absolute value function |−| : R→ R, defined for x ∈ R

|x | =

x if x > 0

−x if x 6 0

When specifying a function f : X → Y by cases, it is important that the
conditions be:

• exhaustive: given x ∈ X , at least one of the conditions on X must hold;
and

• compatible: if any x ∈ X satisfies more than one condition, the specified
value must be the same no matter which condition is picked.



Characteristic functions

Definition

Let X be a set and let U ⊆ X. The characteristic function of U in X is the
function χU : X → {0, 1} defined by

χU(a) =

1 if a ∈ U

0 if a 6∈ U



Example
χE : N→ {0, 1} is the function
defined by

χE (n) =

{
0 if n is even
1 if n is odd.

χQ : R→ {0, 1} is the function
defined by

χQ(x) =

{
0 if x is rational
1 if x is irrational.

Try to draw the graph of the second function, or at least try to imagine it in
your mind.



Exercise
Show that

1 χU∩V = χU χV

2 χU∩V = χU + χV − χU χV

3 χUc = 1− χU



Our mechanistic idea of function

Functions as machines

We might think of a function as a machine which, when given an input,
produces an output. This “machine” is defined by saying what the possible
inputs and outputs are, and then providing a list of instructions (an algorithm)
for the machine to follow, which on any input produces an output—and,
moreover, if fed the same input, the machine always produces the same
output.



Warning
Our algorithmic idea of function implies that functions are computable in
some sense. Note that this idea is at odds with a view of functions as
well-formed logical expressions.
For example, concerning the characteristic function χQ, it is not at all clear
what it means to be presented with a real number as input, let alone whether
it is possible to determine, algorithmically, whether such a number is rational
or not.

It is much harder to make formal what is
meant by an “algorithm”. This was first done
by Alan Turing and Alonzo Church.



Equality of functions

Definition (function extensionality)
Functions f : X → Y and g : X → Y are equal if and only if the sentence

∀x ∈ X f (x) = g(x)

is true.

Exercise
Show that for any set A there is a unique function ∅ → A.



Compositionality of functions
For any set X , we can define a function id : X → X by letting id(x) to be the
same as x . This function is called the identity function on X .

More interestingly, let f : X → Y and g : Y → Z be functions. We can define
a new function k : X → Z by letting

k (x) =def g(f (x))

The function k is called the composition of f and g which we also call “f
composed with g” (or “g after f ”) and which we denote by g ◦ f .

Y

X Z

g

g◦f

f

Proof and the Art of Mathematics by J.D. Hamkins



The order of composition

The order of composition is somewhat confusing; the syntactic order does
not match the diagrammatic order. In the diagram above, f appears to the
left of g while in the syntactic expression of composition g ◦ f , the function f
appears appears on the right.
Nevertheless, they both mean the same thing: in order to evaluate the
expression g(f (x)) you first evaluate f on input x , and then evaluate g. The
function g waits for the the result f (x) of application of f to the input x and
once that is available, g applies to the value f (x).



f
X

x

Y

f (x)

y

g Z

g
(
f (x)

)
g(y )

λy .g(y ) ◦ λx .f (x) = λx .g [f (x)/y ]

λy .log2y ◦ λx .2x = λx .log2y [2x/y ] = log22x = x



The composition of function introduced above has two important
properties:

unitality for any function f : X → Y , we have f ◦ idX = f and idY ◦f = f .
associativity for any functions f : W → X , g : X → Y and h : Y → Z , we have

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .



Constant functions

Definition
We say a function f : X → Y is constant if for all x , x ′ ∈ X we have
f (x) = f (x ′).

Exercise
Show that the identity function id : ∅ → ∅ is constant.

Exercise
Suppose f : X → Y and g : Y → Z are functions. Show that if either f or g is
constant then the composition g ◦ f is constant.



Commuting diagrams of functions

We say a square

A B

C D

f

g

k

h

of sets and functions commutes if

g ◦ f ◦ h = k



Commuting diagrams of functions

We say a square

A B

C D

f

h g

k

of sets and functions commutes if

g ◦ f = k ◦ h



Functions and relations

Functions can be seen as a special kind of relations.

Definition
A binary relation R(x , y ) on A and B is functional if for every x in A there
exists a unique y in B such that R(x , y ). We can express this formally by the
following sentence

(
∀x∃yR(x , y )

)
∧
(
∀x∀y∀z(R(x , y ) ∧ R(x , z)⇒ y = z)

)
If R is a functional relation, we can define a function fR : X → Y by setting
fR(x) to be equal to the unique y in B such that R(x , y ). Conversely, it is not
hard to see that if f : X → Y is any function, the relation Rf (x , y ) defined by
f (x) = y is a functional relation.



For any function f : X → Y , we define as subset of X × Y known as the
graph of f .

Gr(f ) = {(x , y ) | f (x) = y}

Define functions h, i , and p as follows:

h = λx .(x , f (x)) (1)

i = λ(x , y ).(x , y ) (2)

p = λ(x , y ).y (3)

Exercise
Show that the functions f , h, i , and p fit into the following square of sets and
functions commutes:

Gr(f ) X × Y

X Y

i

p

f

h



Composition of relations

Given a relation R on X and Y and a relation S on Y and Z we can
compose them to get a relation S ◦ R on X and Z defined as follows:

x(S ◦ R)z ⇐⇒ ∃y ∈ Y (xRy ∧ yRz)

Exercise
Let B be the “brothership” relation (xBy means x is a brother of y) and S be
the “sistership” relation. Show that the composite relation S ◦ B is not
equivalent to B.

Exercise
• Prove that if both R and S are partial orders then S ◦R is a partial order.

• Prove that if both R and S are equivalence relations then S ◦ R is an
equivalence relation.



Composition of functions from compositions of relations

Theorem
Suppose f : X → Y and g : Y → Z are functions. Consider the
corresponding relations Rf and Rg. The relation corresponding to the
composite function g ◦ f is equivalent to the composite relations Rg ◦ Rf , that
is,

∀x ∈ X∀z ∈ Z
(
x Rg◦f z ⇐⇒ x (Rg ◦ Rf ) z

)



Isomorphisms of sets

Definition
An isomorphism between two sets X and Y is a pair of function

f : X → Y and g : Y → X

such that g ◦ f = idX , and f ◦ g = idY .

We can think of functions f and g above as no data-loss “processes”, e.g.
conversion of files to different format without data being lost.

Definition
The sets X and Y are said to be isomorphic in case there exists an
isomorphism between them. In this case, we use the notation X ∼= Y.



Exercise
Show that for any set A, it is isomorphic to ∅ if and only if A does not have
any elements. Can you prove this without the LEM?



Previously, we defined the cartesian product A× B of two sets A and B to
consists of all the pairs (a, b) where a ∈ A and b ∈ B. Now, we show that if
we have more two sets the order of forming products does not matter.

Exercise
1 For all sets A, B, C we have

(A× B)× C ∼= (A× B)× C

For this reason, we use A× B × C to denote either sets.



Exercise
Show that two finite sets are isomorphic if and only if they have the same
number of elements.



Exercise
Show that for any function f : X → Y, we have

Gr(f ) ∼= X .



A remark on disjoint unions

We introduced the operation of taking disjoint union of two sets as follows:

A t B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}

Exercise
Show that

A t B ∼= ({0} × A) ∪ ({1} × B)

Inspired by this fact we define the disjoint union of a family {Ai | i ∈ I} of sets
to be ⊔

i∈I

Ai =
⋃
i∈I

{i} × Ai .

An element of
⊔
i∈I

Ai is a pair (i , a) where i ∈ I and a ∈ Ai .



Arithmetic of sets

We define the operation of addition on sets as follows: For sets X and Y let
the sum X + Y be defined by their disjoint union X t Y .

Exercise
1 Show that the addition operation on sets is both commutative and

associative.

2 Show that the empty set is the unit (aka neutral element) of addition of
sets.

Exercise
Show that m + n ∼= m + n for all natural numbers m and n.



Exercise
1 Show that if S and S′ are isomorphic, then for all sets X, we have

X + S ∼= X + S′.

2 Prove that for any singleton S, we have N + S ∼= N.

Sometimes, when the context precludes risk of confusion, we use the
notation 1 for any singleton set. Therefore, we can simplify the last
statement in above to

N + 1 ∼= N.



Definition
• A retract (aka left inverse) of function f : A→ B is a morphism r : B → A

such that r ◦ f = idA. In this case we also say A is a retract of B.

• A section (aka right inverse) of function f : A→ B is a morphism
s : B → A such that f ◦ s = idB.

A A

B B
f

idA

idB

s
r

Example
• The circle is a retract of punctured disk.

• The maps from the infinite helix to the circle has a section, but no
continuous section.



Injections

Definition
A function f : X → Y is injective (or one-to-one) if

∀a, b ∈ X , f (a) = f (b)⇒ a = b

An injective function is said to be an injection.



Proposition
Let f : X → Y be a function. If f is injective and X is inhabited, then f has a
retract.



Proof.
Suppose that f is injective and X is inhabited. Since X is inhabited, we get
always fix an element of it, say x0 ∈ X . Now, define r : Y → X as follows.

r (y ) =

x if y = f (x) for some x ∈ X

x0 otherwise

Note that r is well-defined since if for some y , the there are elements x and
x ′ such that y = f (x) = f (x ′), then, by injectivity of f , we have x = x ′, and
therefore, the value of r is uniquely determined.
To see that r is a retract of f , let x ∈ X . Letting y = f (x), we see that y falls
into the first case in the specification of r , so that r (f (x)) = g(y ) = a for some
a ∈ X for which y = f (a). But, f (x) = y = f (a), and by injectivity of f we have
x = a. Therefore, for every x ∈ X ,

r (f (x)) = x = idX (x) .

By function extensionality, r ◦ f = idX .



Was this proof constructive?



Surjections

Definition
A function f : X → Y is surjective (aka onto) if

∀y ∈ Y , ∃x ∈ X , f (x) = y

holds. A surjective function is said to be a surjection.



Proposition
Let f : X → Y be a function. If f is injective and X is inhabited, then f has a
retract.



A function f : X → Y induces a function

P(f ) : P(Y )→ P(X )

defined by
P(f )(S) = {x ∈ X | f (x) ∈ S}

for any subset S of Y . Note that

P(idX ) = idP(X )



Suppose f : X → Y and g : Y → Z are functions. We prove that

P(f ) ◦ P(g) = P(g ◦ f ) .

Recall that in order to prove equality of functions we need to use function
extensionality.
Suppose T is a subset of Z . Then

P(f ) ◦ P(g)T = P(f ) {y ∈ Y | g(y ) ∈ T}
=
{

x ∈ X | f (x) ∈ {y ∈ Y | g(y ) ∈ T}
}

= {x ∈ X | g(f (x)) ∈ T}
= P(g ◦ f )T



Fibres

Definition
For a function f : X → Y, and an element y ∈ Y, the subset

f−1(y ) = {x ∈ X | f (x) = y}

of X is called the fibre of f at y and also the pre-image of y under f .

Example
Consider the function b−c : R→ Z which takes a real number to the greatest
integer less than it. What are the fibres

• b−c−1(0)?

• b−c−1(bπc)?



The operation of taking fibres of a function is itself a function. More
specifically, given a function f , taking fibres of f at different elements y ∈ Y
as a function is equal to the composite

Y
{−}−−→ P(Y ) P(f )−−→ P(X ) ,

that is for all y ∈ Y ,
f−1(y ) = P(f ){y}

Exercise
Consider the family {f−1(y ) | y ∈ Y}. Show that all members of this family
are mutually disjoint, and that their union is fact X .⊔

y∈Y

f−1(y ) ∼=
⋃
y∈Y

f−1(y ) = X



As the last exercise suggests, we can associate to every function a family of
sets given by fibres of that function at different elements of the codomain.

Interestingly, we have the reverse association too: to a family {Yx | x ∈ X}
we associate a function as follows: let the domain to be the disjoint union⊔
x∈X

Yx and let the codomain be X . The associated function

p : {Yx | x ∈ X} → X takes an element in(x) ∈
⊔
x∈X

Yx to x ∈ X .

functions families of sets

T =def taking fibres

U =def taking union

Y

X

{Yx | x ∈ X}f



The set of functions

Suppose X and Y are sets. We can define a new set consisting of all the
functions from X to Y . We denote this set by Y X . Explicitly,

Y X = {f : X → Y} ∼= {R ⊂ X × Y | R is a functional relation}



Exercise
Suppose X is a finite set with m elements and Suppose Y is a finite set with
n elements. Then the set Y X has nm elements.



The set of functions behaves like exponentials

Proposition
Suppose X , Y , Z are sets. We have

• X ∅ ∼= 1

• ∅X ∼= 1 if and only if X = ∅. In particular ∅∅ ∼= 1.

• (X Y )Z ∼= X Y×Z .

• X Y +Z ∼= X Y × X Z



Let Ω be a set with two elements, for instance {>,⊥}. We show that

ΩX ∼= P(X )

that is the power set of X is isomorphic to the set of functions from X to Ω.
To this end we construct two functions f and g and prove that they are
inverse of each other. The function f : ΩX → P(X ) is defined as
λ(ϕ : ΩX ).{x ∈ X | ϕ(x) = >}.
The function g : P(X )→ ΩX is defined as λ(S : P(X )).χS where we recall
that χS is the characteristic function of S ⊆ X .



Dependent product of sets

Let {Xi | i ∈ I} be a family of sets.
Define the set

∏
i∈I Xi to be

{h : I →
⋃
i∈I

Xi | ∀i (h(i) ∈ Xi)}

Note that if I is a finite set, say I = {1, 2, · · · , n} then∏
i∈I

Xi
∼= X1 × X2 × · · · × Xn

In case where I is a finite set, if each Xi is inhabited then the cartesian
product

∏
i∈I Xi is also inhabited. But we cannot prove this for a general I.



Axiom of choice

Axiom of Choice (AC) asserts that the set
∏

i∈I Xi is inhabited for any
indexing set I and any family (Xi | i ∈ I) of inhabited sets.



Warning
The axiom of choice is highly non-constructive: if a proof of a result that does
not use the axiom of choice is available, it usually provides more information
than a proof of the same result that does use the axiom of choice.



Logical incarnation of Axiom of Choice

Proposition
The axiom of choice is equivalent to the statement that for any sets X and Y
and any formula p(x , y ) with free variables x ∈ X and y ∈ Y, the sentence

∀x ∈ X ∃y ∈ Y p(x , y )⇒ ∃(f : X → Y )∀x ∈ X , p(x , f (x)) (4)

holds.



Proof. Assume axiom of choice. Let X and Y be arbitrary sets and p(x , y )
any formula with free variables x ∈ X and y ∈ Y . For each x ∈ X , define
Yx = {y ∈ Y | p(x , y )}. Note that Yx is inhabited for each x ∈ X by the
assumption ∀x ∈ X , ∃y ∈ Y , p(x , y ). By the axiom of choice there exists a
function h : X →

⋃
x∈X

Yx such that h(x) ∈ Yx for all x ∈ X . We compose the

function h with the inclusion ∪x∈X Yx � Y , which we get from the fact that
Yx ⊆ Y for each x ∈ X , to obtain a function f : X → Y . But then
p(x , f (x)) = p(x , h(x)) is true for each x ∈ X by definition of the sets Yx .



Conversely, suppose that we have a family (Xi | i ∈ I) of inhabited sets.
Consider the cartesian product

∏
i∈I Xi . We want to show that this product is

inhabited. Define
p(i , x) =def (x ∈ Xi)

Now, we apply the sentence (4) to the sets I,
⋃
i∈I

Xi and the formula p(i , x)

just defined: we find a function f : I →
⋃
i∈I

Xi such that p(i , f (i)) for all i ∈ I.

But, by definition of p(i , x), we conclude that f (i) ∈ Xi for all i ∈ I. Hence, f is
a member of

∏
i∈I Xi .



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .

Lemma
A maps p : Y → X is surjective if and only if the fibres Yx are inhabited for all
x ∈ X.



Axiom of Choice and surjections

Given a function p : Y → X , consider the associated family {Yx | x ∈ X} of
sets obtained by taking fibres of p at different elements of x .

Lemma
A maps p : Y → X is surjective if and only if the fibres Yx are inhabited for all
x ∈ X.

Lemma
An element of

∏
x∈X Yx is the same thing as a section of p : Y → X.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section.



Axiom of Choice and surjections

Proposition
Axiom of choice is equivalent to the statement that every surjection has a
section.

Proof.
Assume AC. Let p : Y → X be a surjection. Therefore all the fibres Yx are
inhabited. By AC, the product

∏
x∈X Yx is inhabited. Hence, by the last

lemma above, p has a section. Conversely, suppose that every surjection
has a section. Let {Yx | x ∈ X} be family of sets where the set Yx is
inhabited for every x ∈ X . Consider the associated function tx∈X Yx → X .
Note that this map is surjective by our assumption and the first lemma above.
Hence, it has a section which is the same thing as an element of

∏
x∈X Yx .

Therefore AC holds.



Suppose f : A→ B and g : Y → X are functions. We say that f is (left)
orthogonal to g (and, equivalently, g is right orthogonal to f ) if for any two
function that make the square

A Y

B X

y

f p

x

commute (i.e. p ◦ y = x ◦ f ), there is a function d : B → Y which makes both
triangles commute

A Y

B X

y

f p

x

d
,

i.e.
p ◦ d = x and d ◦ f = y



Proposition
• Any map right orthogonal to 2→ 1 is injective.

• Any map right orthogonal to ∅ → 1 is surjective.



Cantors’ theorem: A < P(A)

Lemma
If a function σ : A→ BA is surjective then every function f : B → B has a
fixed point.

Proof.
Because σ is a surjection, there is a ∈ A such that σ(a) = λx : A . f (σ(x)(x)),
but then σ(a)(a) = f (σ(a)(a).

Corollary
There is no surjection A→ P(A).



Let’s associate to each finite set X a number card(X ), called the “cardinality”
of X , which measures how many (distinct) elements the set X has. We then
have

• card(X + Y ) = card(X ) + card(Y ) and

• card(X × Y ) = card(X )× card(Y ).

More generally, for any finite set I and a family of finite sets {Xi | i ∈ I}, we
have

• card(
⊔
i∈I

Xi) =
∑
i∈I

card(Xi) and

• card(
∏

i∈I Xi) =
∏

i∈I card(Xi)



Questions


